

The Knowledge Leader for Project Success

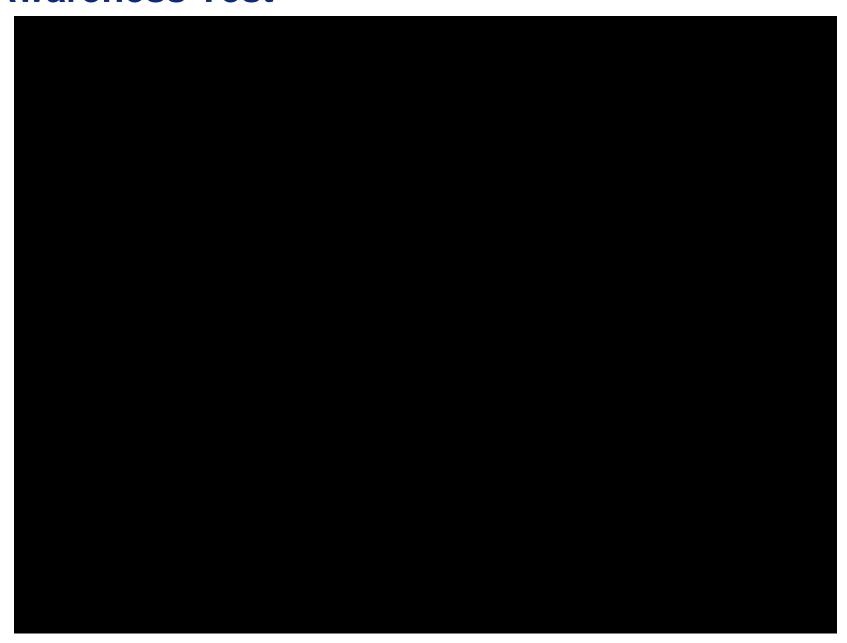
Leveraging 25 Years of Industry Leadership

COAA Benchmarking Phase III The 10-10 Program: from Lagging to Leading

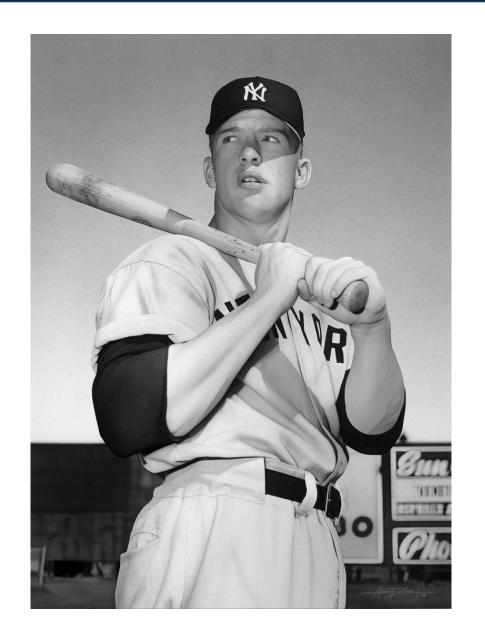
COAA Best Practices Conference XXIII

May 13, 2015 Edmonton, Alberta

Stephen P. Mulva, Ph.D. Associate Director


Jim Lozon, Ph.D., P.Eng. VP, PDE Systems Inc.

Agenda


- CII / COAA 10-10 Program Overview
- 10-10 Findings / Analyses
- 10-10 Portfolio Analyses (Corporate)
- 10-10 Program System
- New Frontiers
- COAA Benchmarking Phase III

Awareness Test

- "It's unbelievable how much you don't know about the game you've been playing all your life.
 - Mickey Mantle

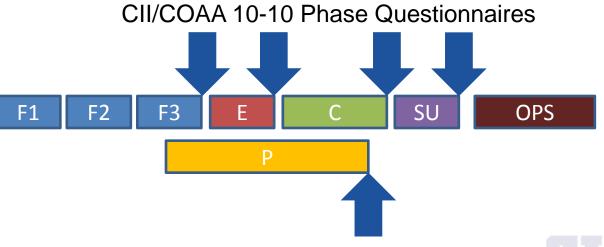
A, B, or C Team? How to Know / Measure?

- 5 Principles of Project Integration
 - Work and Work Process
 - Organizational Engineering
 - Leadership and Governance
 - Communications and Information Flow
 - Business Environment and Culture
- CII's 10-10 Program Measures
 - 10 Leading (Team) Indicators
 - 10 Performance Outcomes (Cost, Capacity, etc.)

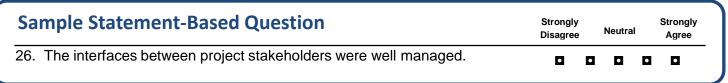
CII's 10-10 Program

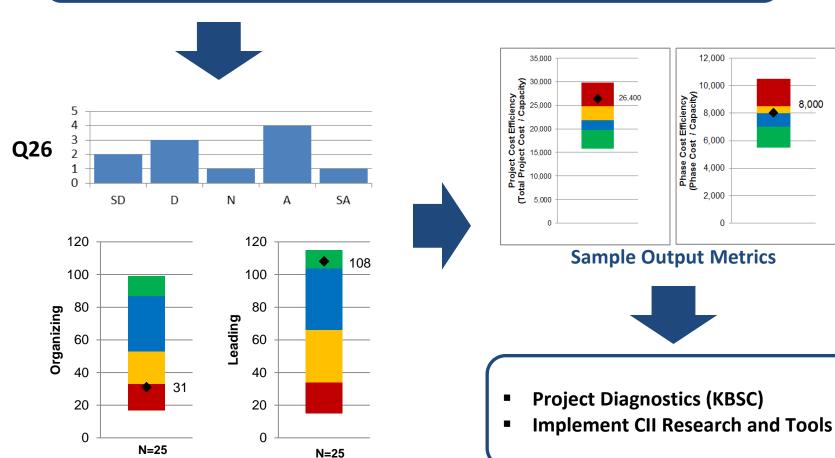
- Simple and Important Measures
 - 10 Input Measures (Leading Indicators)
 - 10 Output Measures (Cost, Duration, Capacity, FTE, Quantities)
- Research-Based
 - 75% CII / COAA Research (e.g., Project Health Indicators)
 - 15% Capital Projects Research (CII Members)
 - 10% Other Industries (Project Management Measures)
- Launched July 2013 (CII Annual Conference)
- Industrial, Building, and Infrastructure Sectors Phase-Based Surveys
- CII Requesting 10 Project-Phase Surveys from Each CII Member by May 15, 2015
- www.10-10program.org

Traditional Benchmarking vs. 10-10 Performance Assessment Program


CII/COAA General Benchmarking Program

Process, Practice


CII/COAA 10-10 Program


People, Practice

CII/COAA 10-10 Phase Questionnaire

How Cll's 10-10 Program Works

Sample Input Metrics

8,000

10-10 Surveys ALL CII Practices

- Constructability (Engr.) RT3, 29, 34, 283
 - "Comprehensive constructability suggestions (e.g., preassembly, prefabrication, modularization, and offsite fabrication) were evaluated and incorporated into the Engineering of this project" (SA, A, N, D, SD)
- Quality Management (Proc.) RT10, 31, 36, 130, 172, 254, 257, 264, 307, 308
 - "This project implemented a supplier quality surveillance program" (SA, A, N, D, SD)
- Change Management (Const.) RT27, 43, 158, 244, 258, 290,
 - "Plan and progress including changes were communicated clearly and frequently amongst project stakeholders" (SA, A, N, D, SD)
- 41 Practices and Best Practices
- Surveys New Research

10 Leading Indicators (Team Indicators)

CII 10-10 Performance Assessment Report Industrial Projects - Engineering Phase TENC12345 ~ Zydeco Chemicals Expansion

Project General Information

Company: CII Engineering & Construction. Co.

Project: Zydeco Chemicals Expansion

ID: TENC12345

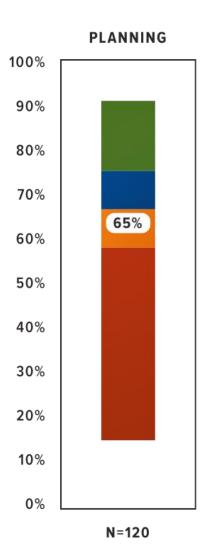
Location: New Orleans, Louisiana, United States

Project Type: Chemical Manufacturing

Capacity: 100,000.00 short tons per day

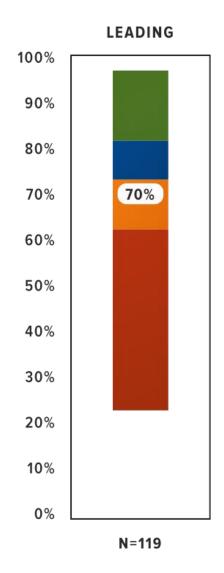
Local (2011): USD 275,000,000 Chicago (2013): USD 289,382,845 Midpoint of Phase: Dec 17, 2011

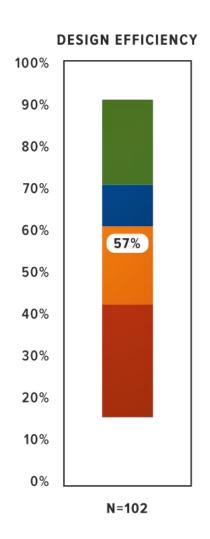
Forecasted Phase Duration: 65.00 wks
Actual Phase Duration: 91.29 wks


Date: Sep 10, 2014

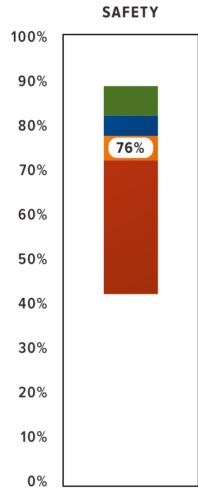
Total Project Cost

Input Measures Planning Organizing Leading Controlling Design Efficiency 100 100 100 100 100 80 80 80 80 68% 62% 61% 70 70 70 59% 57% 60 50 50 50 50 50 40 40 40 30 20 20 20 2Q


- 1. Planning: The work a manager performs to predetermine a course of action. The function of planning includes the following activities: Forecasting, Objective Setting, Program Development, Scheduling, Budgeting, and Policies and Procedures Development.
- 2. Organizing: The work a manager performs to arrange and relate the work to be done so people can perform it most effectively. The function of organizing includes the following activities: Development of Organization Structure, Delegation of Responsibility and Authority, and Establishment of Relationships.


- 3. Leading: The work a manager performs to cause people to take effective action. The activities involved in the function of leading include: Decision-Making,

 Communications, Motivation, Selection of People, and Development of People.
- 4. Controlling: The work a manager performs to assess and regulate work in progress and completed. Management controls are achieved through the following activities: Establishment of Performance Standards, Measurement of Performance, Evaluation of Performance, and Correction of Performance.



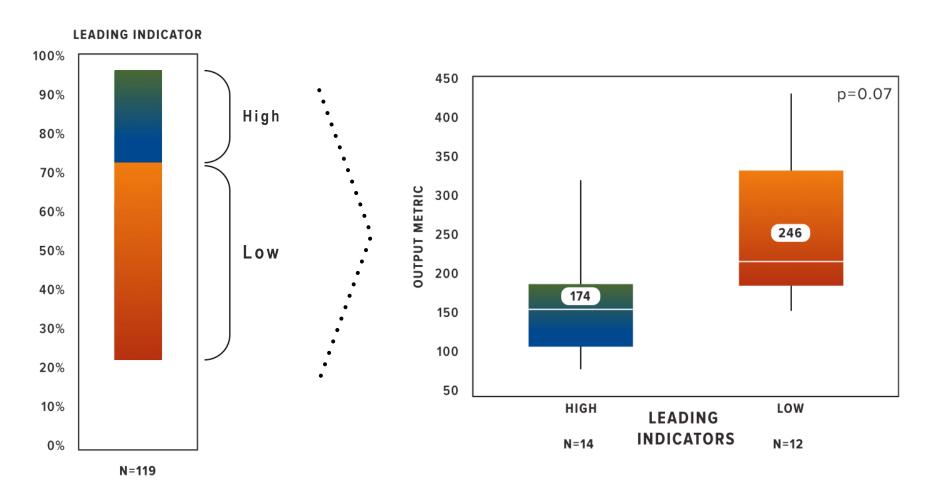
- 5. Design Efficiency: Measures if the project team is exhausting all techniques to optimize the design in its use of material quantities to provide maximum capacity at minimum cost.
- 6. Human Resources: Examines if the project is staffed correctly, with a minimum amount of staff turnover and appropriate training. Measures if people are capable of achieving project goals.
- 7. Quality: Measures if the project team is strictly conforming to project requirements. Analyzes if programs are pursued to assure the delivery of material goods as intended.

- 8. Sustainability: Evaluates steps taken by the project team to reduce the environmental impact of the project during construction and operation.
- 9. Supply Chain Management: Examines the strategies used by the project team to promote enhanced working relationships amongst all project stakeholders including those in the project supply chain.
- **10. Safety:** Measures the steps followed by the project team to eliminate any possibility of personal injury or property damage on the project.

10 Outputs (Capacity and FTE-Based Metrics)

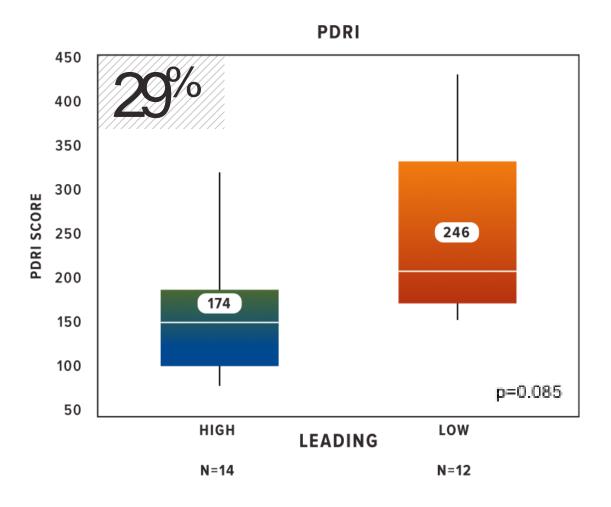
Table 5: List Output Metrics by Phase

Metrics Type	FEP/PROG	ENG/DES	PRO	CON	STA/COM		
	(Building) Forecasted Project Cost Efficiency	(Building) Forecasted Project Cost Efficiency	(Building) Forecasted Project Cost Efficiency	(Building) Forecasted Project Cost Efficiency	(Building) Actual Project Cos Efficiency		
ased	(Building) FEP (Programming) Cost Efficiency	(Building) Engineering (Design) Cost Efficiency	(Building) Total Equipment Cost/Capacity	(Building) Construction Cost Efficiency	(Building) Startup (Commissioning) Cost		
Capacity-based Metrics	(Building) Forecasted Project Schedule Efficiency	(Building) Forecasted Project Schedule Efficiency	(Building) Forecasted Project Schedule Efficiency	 (Building) Forecasted Project Schedule Efficiency 	Efficiency 3. (Building) Actual Project		
Сарх	 (Building) FEP (Programming) Schedule Efficiency 	(Building) Engineering (Design) Schedule Efficiency	(Building) Procurement Schedule Efficiency	(Building) Construction Schedule Efficiency	Schedule Efficiency 4. (Building) Startup		
		5. (Building) Capacity Efficiency		5. (Building) Capacity Efficiency	(Commissioning) Schedule Efficiency		
Relative Metrics	5. FEP (Programming) Cost Growth	Engineering (Design) Cost Growth	Procurement Schedule Growth	Construction Cost Growth Construction Schedule	Startup (Commissioning) Cos Growth		
	FEP (Programming) Schedule Growth	Engineering (Design) Schedule Growth	Total Cost of Equipment/Total Project Cost	Growth	Startup (Commissioning) Schedule Growth		
Phase burn Metric	7. FEP (Programming) Burn Rate	Engineering (Design) Phase Burn Rate	Procurement Phase Burn Rate	Construction Phase Burn Rate	Startup (Commissioning) Phase Burn Rate		
Procurement Metrics			Total Cost of Equipment/Total Number of Major Equipment				
			Total Project Cost/Number of Vendors				
			 Total Project Cost/Number of Purchase Orders 				
FTE-Based Metrics	Project Management Team Size/Total Project Cost (Adjusted for Complexity)	Size/Total Project Cost Size/Total Project Cost		Project Management Team Size/Total Project Cost (Adjusted for Complexity)	Startup (Commissioning) Management Team Size/Tot Project Cost (Adjusted for		
	10. Engineering Team Size/Total Project Cost (Adjusted for Complexity)		12. Procurement Team Size/Total Project Cost (Adjusted for Complexity)	Craft Work Force/Construction Phase Cost	Complexity) 9. Startup (Commissioning) Phase Management Team		
		11. Engineering Team Size/Engineering Phase Cost	13. Procurement Team Size/Total Cost of Major Equipment		Size/Startup Phase Cost		
cs 4	•	•		11. TRIR	•		
Safety Metrics				12. DART			



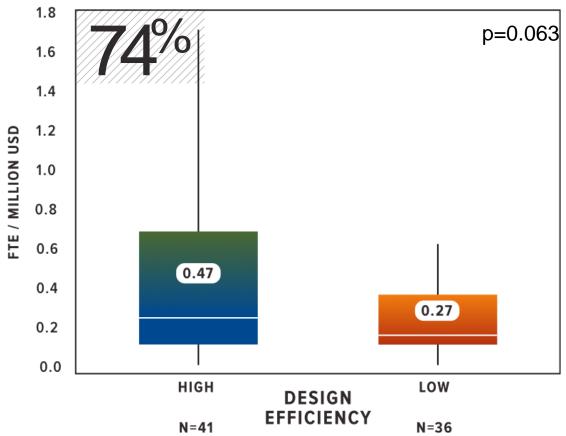
10-10 FINDINGS / ANALYSES

Round 1 Results (600+ Global Projects)


Typical Analysis of a Leading Indicator

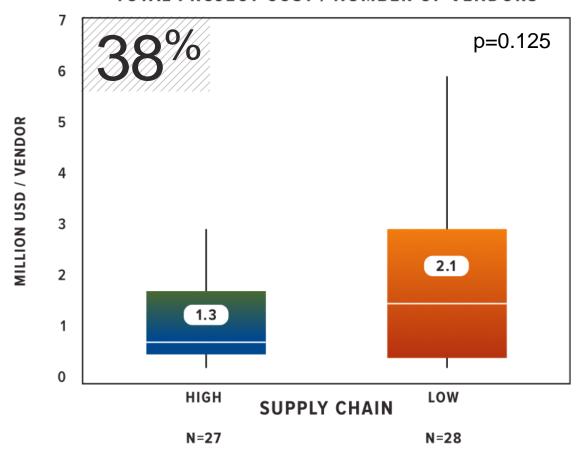
Front End Planning (FEP)

Effect of Leadership



Engineering (Design)

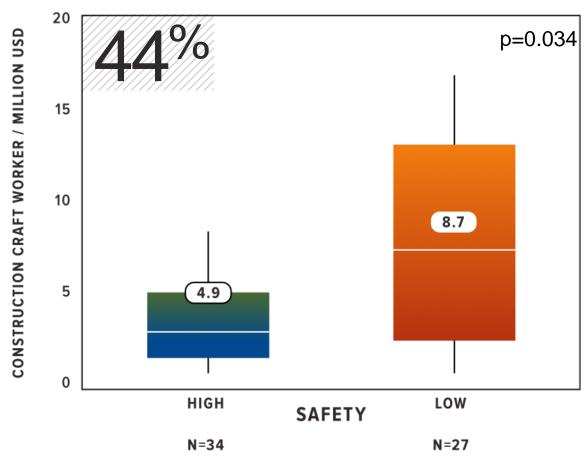
Impact of Design Efficiency



Procurement

Effect of Supply Chain

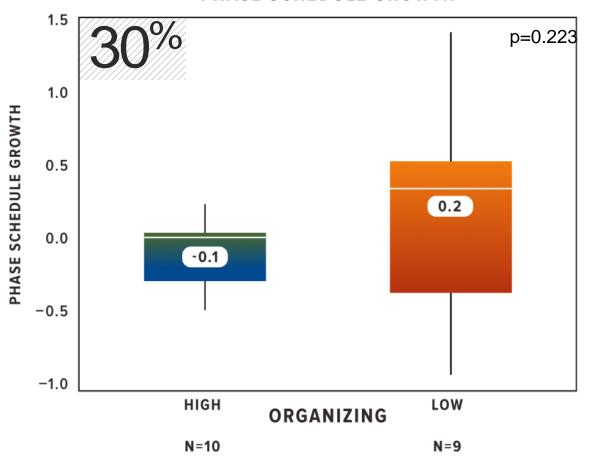
TOTAL PROJECT COST / NUMBER OF VENDORS



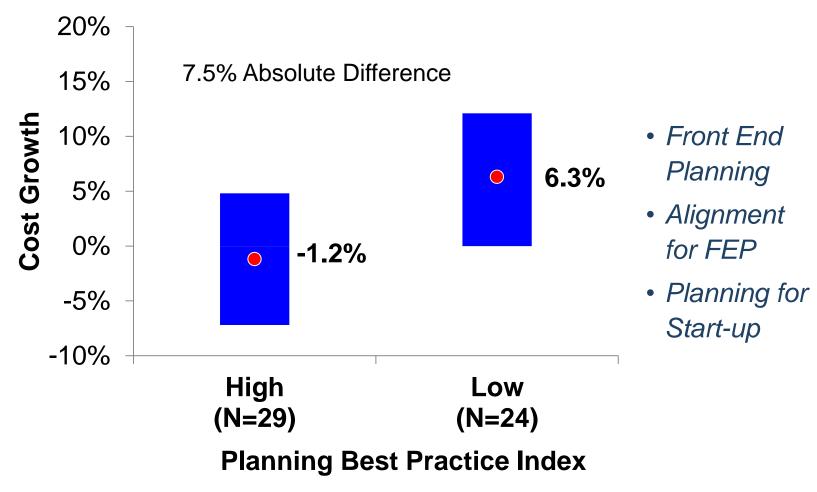
Construction

Impact of Safety

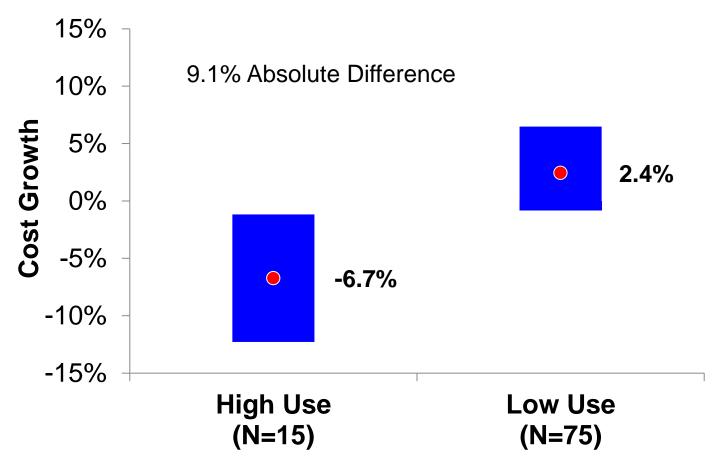
CRAFT WORK FORCE / CONSTRUCTION COST



Start Up / Commissioning


Effect of Organizing

PHASE SCHEDULE GROWTH


CII VBP: Owner Planning (6.1% NPV Gain)

=standard error of mean (90% confidence interval)

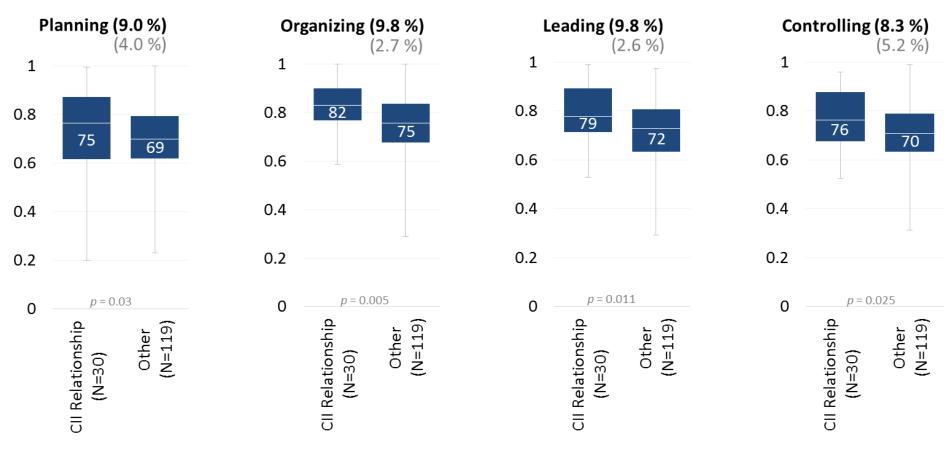
CII VBP: Owner Partnering (33.8% NPV Gain)

=standard error of mean (90% confidence interval)

CII Working Relationship

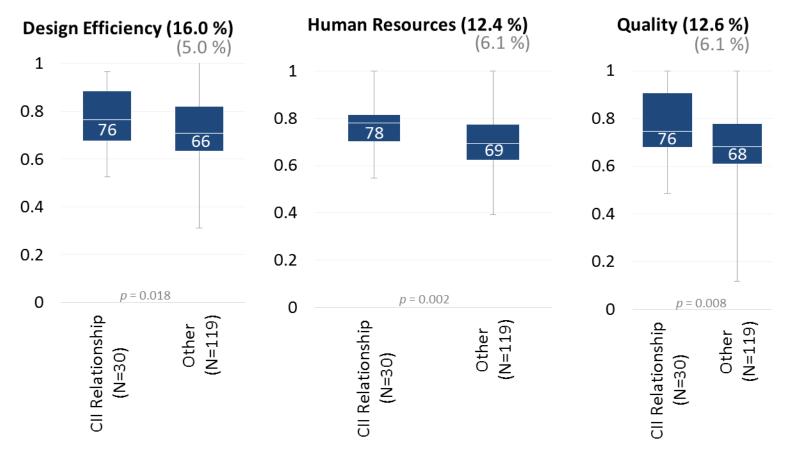
- The goal of the analysis is to assess whether projects that have CII members as owners and contractors have better performance (10-10 input measures)
- Each box and whisker plot shows:

Group of projects that had CII members as both owners and contractors

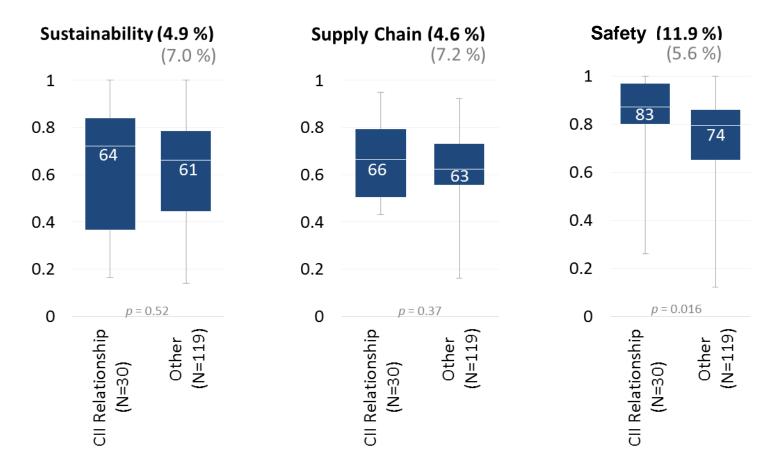

versus

Group of projects in which either the owner or contractor were not a CII member

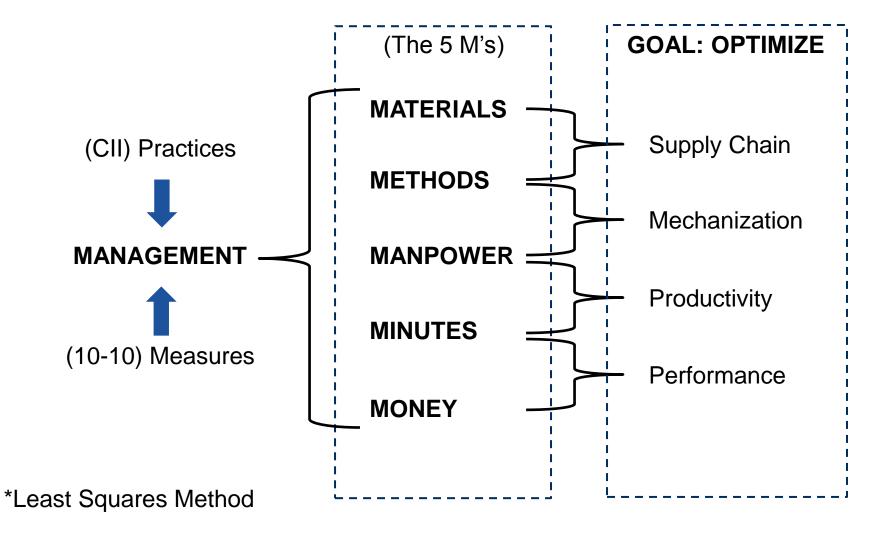
The number in white within the boxes indicate the group average


Input Measures by Working Relationship

The number in white within the boxes indicate the group average for projects with more than two respondents. The percentage in black indicates the difference between the two averages. The percentage in light gray indicates the difference for projects with only one response.


Input Measures by Working Relationship

The number in white within the boxes indicate the group average for projects with more than two respondents. The percentage in black indicates the difference between the two averages. The percentage in light gray indicates the difference for projects with only one response.


Input Measures by Working Relationship

The number in white within the boxes indicate the group average for projects with more than two respondents. The percentage in black indicates the difference between the two averages. The percentage in light gray indicates the difference for projects with only one response.

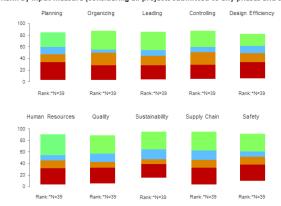
The Logic of 10-10 (33.1% Better Management*)


10-10 PORTFOLIO ANALYSIS (BY COMPANY)

CII Company Portfolio 10-10 Analysis

10-10 Contractors's Rank by Project Performance

10-10 Contractor

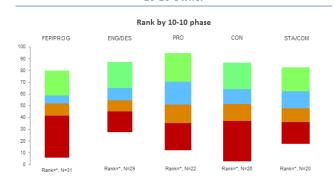


The white circle indicates your company average score in each phase.

The score is the average of the score of all 10 measures for all the projects submitted by your company in each phase.

* Rank and average score are reported only when more than three projects have been submitted in a given phase.

Rank by input measure (considering all projects submitted to any phases and sectors)

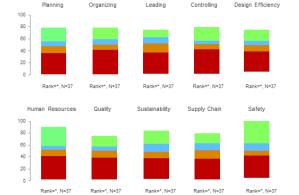

The white circle indicates your company average score.

* Rank are average score are reported only when more then five projects have been submitted.

Last undate: 3/21/2015

10-10 Owner's Rank by Project Performance

10-10 Owner



The white circle indicates your company average score in the phase.

The score is the average of the score of all 10 measures for all the projects submitted by your company in each phase.

* Average score and rank are reported only when more than three projects have been submitted in each phase.

Rank by input measure (considering all projects submitted to any phases and sectors)

The white circle indicates your company average score.

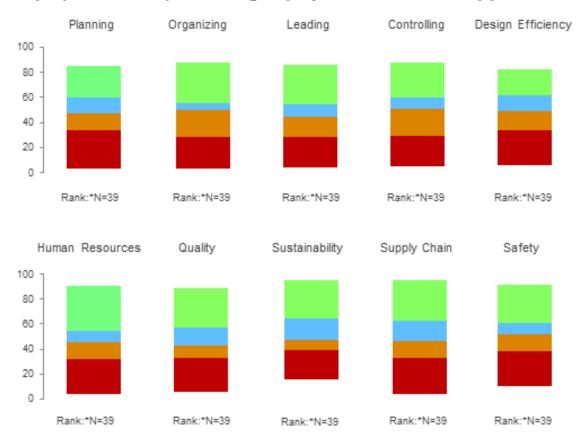
* Rank are average score are reported only when more then five projects have been submitted.

Last update: 3/21/2015

CII Company Portfolio 10-10 Analysis

Rank by 10-10 phase

The white circle indicates your company average score in each phase.

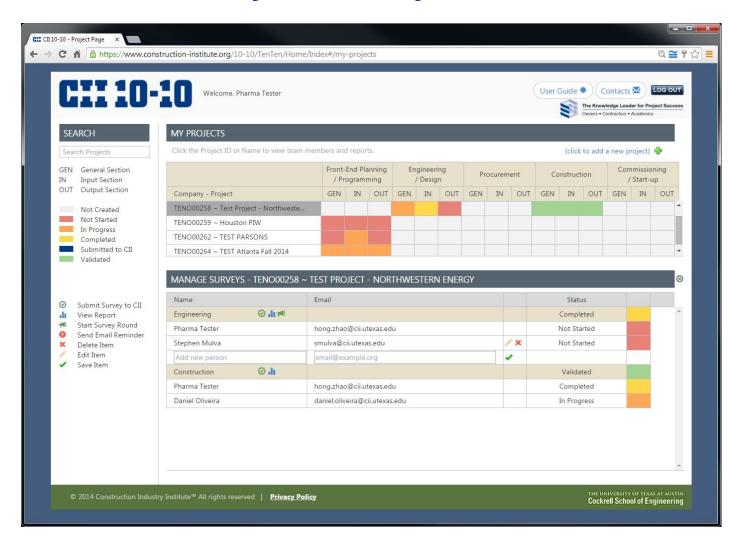

The score is the average of the score of all 10 measures for all the projects submitted by your company in each phase.

* Rank and average score are reported only when more than three projects have been submitted in a given phase.

CII Company Portfolio 10-10 Analysis

Rank by input measure (considering all projects submitted to any phases and sectors)

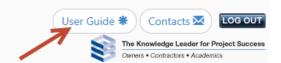
The white circle indicates your company average score.



^{*} Rank are average score are reported only when more then five projects have been submitted.

10-10 PROGRAM SYSTEM

NEW User-Friendly 10-10 System



10-10 User Guide

Welcome, Pharma Tester

SEARCH

Search Projects

GEN General Section Input Section OUT Output Section

Not Created Not Started

In Progress

Completed

Submitted to CII

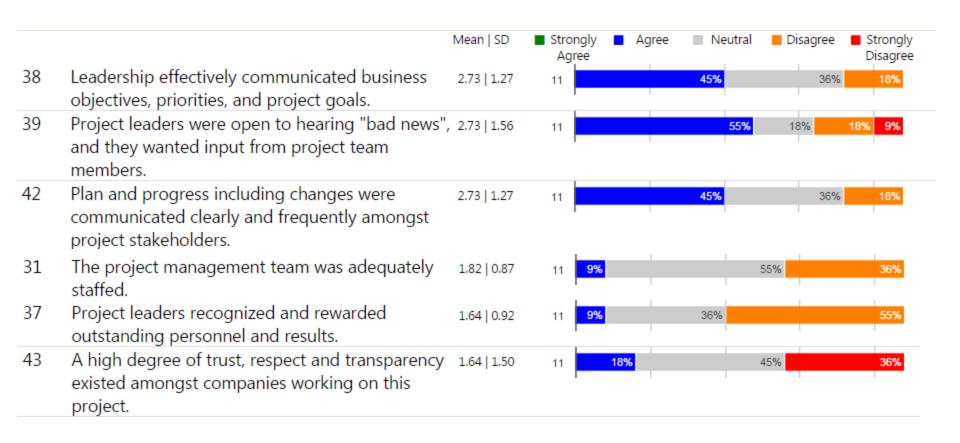
Validated

MY PROJECTS

Click the Project ID or Name to view team members and reports.

(click to add a new project) 🖶

	Front-End Planning / Programming		Engineering / Design		Procurement		Construction		Commissioning / Start-up						
Company - Project		IN	OUT	GEN	IN	OUT	GEN	IN	OUT	GEN	IN	OUT	GEN	IN	OUT
Pharma Testco Owner															
TENO00258 ~ Test Project - Northweste															
TENO00259 ~ Houston PIW															


Glossary, Metrics and Definitions

10-10 Questions/Results

Sample Report

10-10 Questions/Results

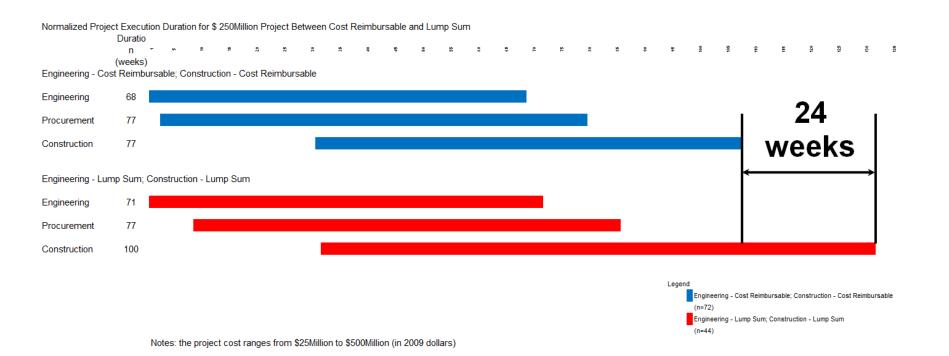
		Mean SD	■ Strongly Agree	Agree	■ Neutral	Disagree	Strongly Disagree
26	All of the necessary, relevant project team members were involved in an effective risk identification and management process for Construction.	5.00	1				100%
27	Project safety procedures were well defined and strictly followed.	5.00	1				100%
28	Project management team members were clear about their roles and how to work with others on the project.	5.00	1				100%
30	People on this project worked effectively as a team.	5.00	1				100%
39	Project leaders were open to hearing "bad news", and they wanted input from project team members.	5.00	1				100%
40	Plan and progress including changes were communicated clearly and frequently amongst project stakeholders.	5.00	1				100%
41	The project's Startup objectives were appropriately communicated to the relevant project team members.	5.00	1				100%

10-10 Program Implementation

Question Mapping

Question - Input Metric map

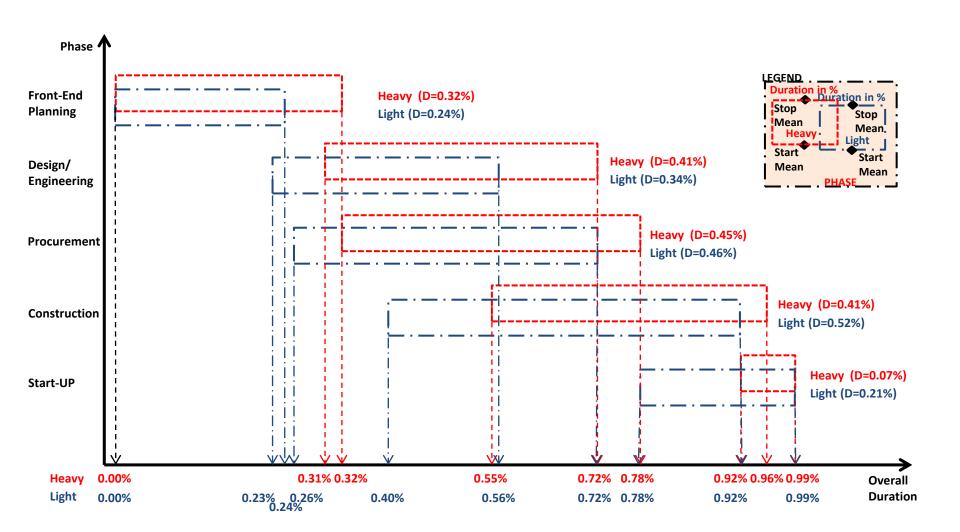
	Industrial Projects – Construction Phase	Planning	Organizing	Leading	Controlling	Design Efficiency	Human Resources	Quality	Sustainability	Supply Chain	Safety
G	What was the typical foreman to craft ratio?										
G	Overall how many workers per safety professional were typically (i.e., in terms of the average workforce) on site?										
4	Did the project objectives change during Construction?										
5	This project experienced a high number of:										
6	Was a turnaround involved in the scope of this project?										
7	Please characterize how project meetings were conducted.										
8	Which of the following statements characterized the decisions made by the manager(s) of this project?										
9	This project used the following methods.										
10	Formal (classroom) safety training was attended:										
11	Did the original primary contractor(s) complete the project?										
13	Was safety performance a criterion for contractor and subcontractor selection?										
14	Were safety toolbox meetings held daily?										
15	Were accidents including near misses formally investigated?										
16	The availability and competency of craft labor was adequate.										
17	The owner level of involvement was appropriate.										
18	The owner and primary contractor(s) maintain a long- standing partnering arrangement.										



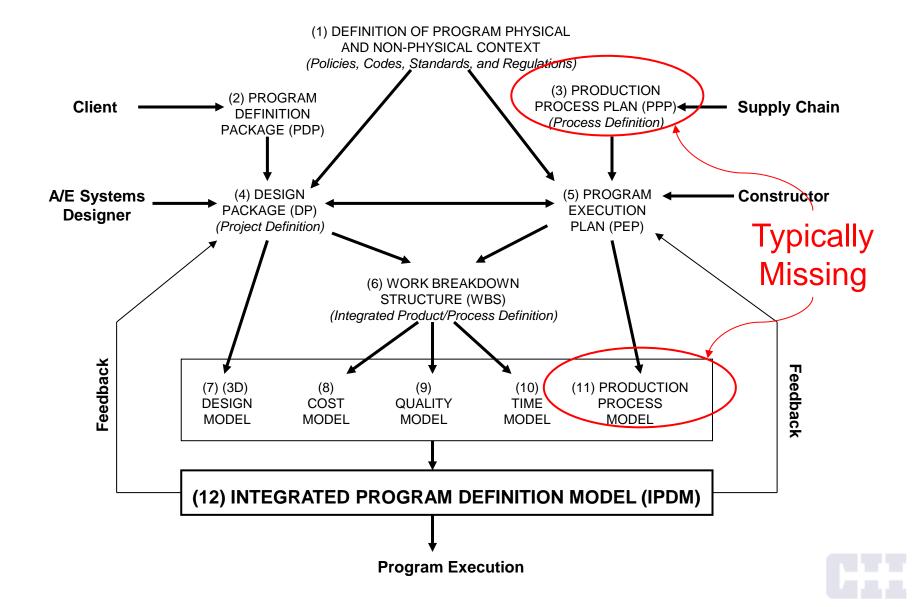
NEW FRONTIERS

CII Phase Duration Research (2011-Present)

- Normalized \$250 MM Projects
- C/R (Blue) vs. L/S (Red) Contracting

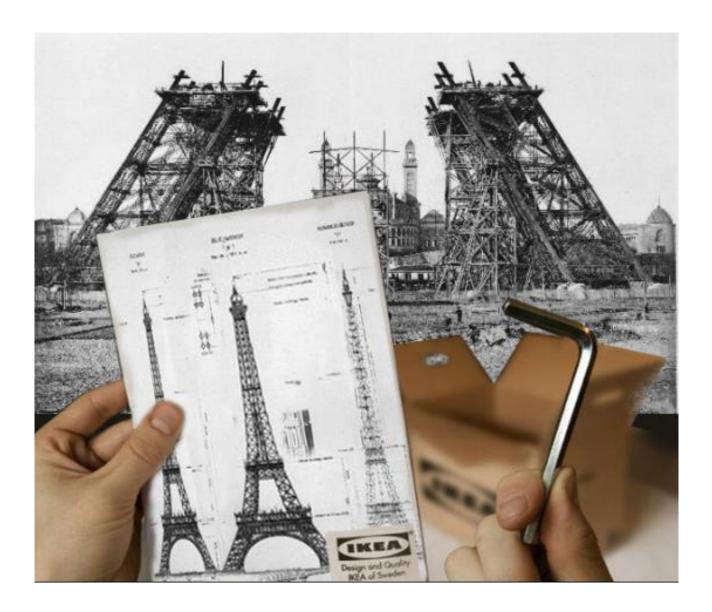

Procurement Involvement in FEP

Analyzed by: BMM Team
*Each project's cost was normalized to \$ 250 MM


35 Weeks Less than 100% FEP complete prior to Procurement start (n=53 projects) Overall 190 weeks Weeks 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 115 120 125 130 135 140 145 150 155 160 165 170 175 180 185 190 195 200 205 210 215 220 225 FEP Design 85 weeks Procurement 102 weeks 78 weeks Construction 22 weeks Startup 100% FEP complete prior to Procurement start (n=97 projects) Overall 225 weeks 5 10 15 20 25 30 35 40 45 50 55 65 70 Weeks 90 95 100 105 110 115 120 125 130 135 140 145 150 155 160 165 170 175 180 185 190 195 200 205 210 215 220 225 FEP Design 91 we Procurement Construction 93 weeks Startup Weeks 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 225 Less than 100% FEP 100% complete Less than 100% Design 100% complete 91 weeks Less than 100% 102 weeks Procurement 100% complete 92 weeks 40 Weeks Less than 100% 78 weeks Construction 100% complete Less than 100% 22 weeks Startup 100% complete

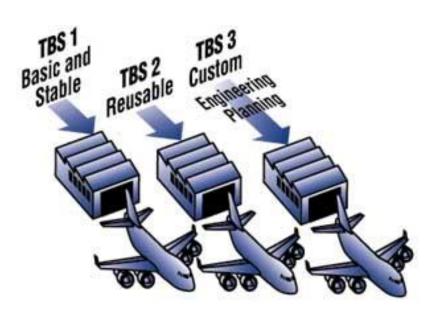
Arrangement of Phases

Interface Management


Collaboration?

- Communicate Too Much or Not Enough?
- Lines of Communication = (n(n-1))/2

# Project Team Members	# Lines of Communication
7	21
15	105
50	1225
100	4950
500	124750



Advanced Work Packaging?

Advanced Work Packaging!

Airplane **Customer Specific** Configuration **Option Selection** Library Modules P311 NO. 2 Part No. 1 PIBUS Plans Customer Engineer Customer **Option Catalog** Airplane-Specific Configuration Table Airplane-Specific Build Record Design Marketing Engineer **Create Options**

© 2001; Boeing Corporation (DCAC/MRM Initiative)

COAA PHASE III JIM LOZON

- Coming together is a beginning; keeping together is progress; working together is success
 - Henry Ford

Questions?

www.10-10program.org

Stephen Mulva, Ph.D.

Associate Director, CII smulva@cii.utexas.edu (512) 232-3013

Jim Lozon, Ph.D., P.Eng.

Vice President jlozon@shaw.ca (403) 466-1449

